1. Give the expected bond angles and predict the hybrid orbitals expected for the following compounds: (4 pts)

 a) CH₂O

 \[
 \begin{array}{c}
 O \\
 H \quad C \quad H
 \end{array}
 \]

 electron geometry: trigonal planar

 hybrid orbitals: \(sp^2\)

 bond angle: 120°

 b) \(O_2\)

 \[
 \begin{array}{c}
 O = O
 \end{array}
 \]

 electron geometry: trigonal planar

 hybrid orbitals: \(sp^2\)

 bond angle: 120°

2. Use partial orbital diagrams (Valence Bond Theory) to show how the atomic orbitals of the central atom leads to hybridization for the following molecules: (4 pts)

 a) \(CO_3^{2-}\)

 Trigonal Planar

 \[
 \begin{array}{cccccc}
 2p & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\
 2s & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\
 \end{array}
 \]

 \(sp^3\)

 b) \(SF_4\)

 Trigonal bipyramidal (See saw)

 \[
 \begin{array}{cccccc}
 3d & _ & _ & _ & _ & _ \\
 3p & _ & _ & _ & _ & _ \\
 \end{array}
 \]

 \(sp^3d\)

3. Using a Molecular Orbital Diagram, calculate the bond order for carbon CO. (2 pts)

 Bond Order = \(\frac{1}{2}(8 - 2) = 3\)